Select A Pathogen Model
Model >> Bacterium
Bacteria >> Model

The models are based on extensive experimental data of microbial behavior in liquid microbiological media and food.

There can be no guarantee that predicted values will match those that would occur in any specific food system. Before the models could be used in such a manner, the user would have to validate the models for each specific food of interest.

Ok

Development of a predictive model for Salmonella spp. reduction in meat jerky product with temperature, potassium sorbate, pH, and water activity as controlling factors

Input Conditions

Range: 0 to 0.3 (% [w/w])
Range: 5 to 7
Range: 0.65 to 0.85

Note: Coded values are used in the equation in the published paper. Xaw = (Aw -0.75)/0.05; XpH = (pH-6.0)/0.5; XPS = (PS-0.15)/0.075; XT = (T-75)/5

Modeled Results*
Temperature (°C) Log Reduction (log10 CFU/g) Inactivation Rate ((log10 CFU/g)/h)
65 3.29 0.58
65.1 3.29 0.58
65.2 3.30 0.58
65.3 3.31 0.59
65.4 3.31 0.59
65.5 3.32 0.59
65.6 3.33 0.59
65.7 3.34 0.60
65.8 3.34 0.60
65.9 3.35 0.60
66 3.36 0.60
66.1 3.37 0.61
66.2 3.37 0.61
66.3 3.38 0.61
66.4 3.39 0.62
66.5 3.40 0.62
66.6 3.40 0.62
66.7 3.41 0.62
66.8 3.42 0.63
66.9 3.43 0.63
67 3.43 0.63
67.1 3.44 0.63
67.2 3.45 0.64
67.3 3.46 0.64
67.4 3.46 0.64
67.5 3.47 0.65
67.6 3.48 0.65
67.7 3.49 0.65
67.8 3.49 0.65
67.9 3.50 0.66
68 3.51 0.66
68.1 3.52 0.66
68.2 3.52 0.67
68.3 3.53 0.67
68.4 3.54 0.67
68.5 3.55 0.68
68.6 3.55 0.68
68.7 3.56 0.68
68.8 3.57 0.68
68.9 3.58 0.69
69 3.58 0.69
69.1 3.59 0.69
69.2 3.60 0.70
69.3 3.61 0.70
69.4 3.61 0.70
69.5 3.62 0.70
69.6 3.63 0.71
69.7 3.64 0.71
69.8 3.64 0.71
69.9 3.65 0.72
70 3.66 0.72
70.1 3.67 0.72
70.2 3.67 0.73
70.3 3.68 0.73
70.4 3.69 0.73
70.5 3.70 0.74
70.6 3.71 0.74
70.7 3.71 0.74
70.8 3.72 0.75
70.9 3.73 0.75
71 3.74 0.75
71.1 3.74 0.75
71.2 3.75 0.76
71.3 3.76 0.76
71.4 3.77 0.76
71.5 3.77 0.77
71.6 3.78 0.77
71.7 3.79 0.77
71.8 3.80 0.78
71.9 3.80 0.78
72 3.81 0.78
72.1 3.82 0.79
72.2 3.83 0.79
72.3 3.83 0.79
72.4 3.84 0.80
72.5 3.85 0.80
72.6 3.86 0.80
72.7 3.87 0.81
72.8 3.87 0.81
72.9 3.88 0.81
73 3.89 0.82
73.1 3.90 0.82
73.2 3.90 0.82
73.3 3.91 0.83
73.4 3.92 0.83
73.5 3.93 0.83
73.6 3.93 0.84
73.7 3.94 0.84
73.8 3.95 0.84
73.9 3.96 0.85
74 3.97 0.85
74.1 3.97 0.85
74.2 3.98 0.86
74.3 3.99 0.86
74.4 4.00 0.86
74.5 4.00 0.87
74.6 4.01 0.87
74.7 4.02 0.87
74.8 4.03 0.88
74.9 4.03 0.88
75 4.04 0.88
75.1 4.05 0.89
75.2 4.06 0.89
75.3 4.07 0.90
75.4 4.07 0.90
75.5 4.08 0.90
75.6 4.09 0.91
75.7 4.10 0.91
75.8 4.10 0.91
75.9 4.11 0.92
76 4.12 0.92
76.1 4.13 0.92
76.2 4.14 0.93
76.3 4.14 0.93
76.4 4.15 0.93
76.5 4.16 0.94
76.6 4.17 0.94
76.7 4.17 0.95
76.8 4.18 0.95
76.9 4.19 0.95
77 4.20 0.96
77.1 4.21 0.96
77.2 4.21 0.96
77.3 4.22 0.97
77.4 4.23 0.97
77.5 4.24 0.98
77.6 4.24 0.98
77.7 4.25 0.98
77.8 4.26 0.99
77.9 4.27 0.99
78 4.28 0.99
78.1 4.28 1.00
78.2 4.29 1.00
78.3 4.30 1.01
78.4 4.31 1.01
78.5 4.32 1.01
78.6 4.32 1.02
78.7 4.33 1.02
78.8 4.34 1.02
78.9 4.35 1.03
79 4.35 1.03
79.1 4.36 1.04
79.2 4.37 1.04
79.3 4.38 1.04
79.4 4.39 1.05
79.5 4.39 1.05
79.6 4.40 1.06
79.7 4.41 1.06
79.8 4.42 1.06
79.9 4.43 1.07
80 4.43 1.07
80.1 4.44 1.08
80.2 4.45 1.08
80.3 4.46 1.08
80.4 4.46 1.09
80.5 4.47 1.09
80.6 4.48 1.10
80.7 4.49 1.10
80.8 4.50 1.10
80.9 4.50 1.11
81 4.51 1.11
81.1 4.52 1.12
81.2 4.53 1.12
81.3 4.54 1.12
81.4 4.54 1.13
81.5 4.55 1.13
81.6 4.56 1.14
81.7 4.57 1.14
81.8 4.58 1.14
81.9 4.58 1.15
82 4.59 1.15
82.1 4.60 1.16
82.2 4.61 1.16
82.3 4.62 1.16
82.4 4.62 1.17
82.5 4.63 1.17
82.6 4.64 1.18
82.7 4.65 1.18
82.8 4.66 1.19
82.9 4.66 1.19
83 4.67 1.19
83.1 4.68 1.20
83.2 4.69 1.20
83.3 4.70 1.21
83.4 4.70 1.21
83.5 4.71 1.22
83.6 4.72 1.22
83.7 4.73 1.22
83.8 4.74 1.23
83.9 4.74 1.23
84 4.75 1.24
84.1 4.76 1.24
84.2 4.77 1.25
84.3 4.78 1.25
84.4 4.78 1.25
84.5 4.79 1.26
84.6 4.80 1.26
84.7 4.81 1.27
84.8 4.82 1.27
84.9 4.82 1.28
85 4.83 1.28
Source:

Vijay K. Juneja, Martin Valenzuela-Melendres, Dilek Heperkan, Derrick Bautista, David Anderson, Cheng-An Hwang, Aida Peña-Ramos, Juan Pedro Camou, and Noemi Torrentera-Olivera. Development of a predictive model for Salmonella spp. reduction in meat jerky product with temperature, potassium sorbate, pH, and water activity as controlling factors. International Journal of Food Microbiology 236 (2016) 1–8.